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J .  P H Y S .  A ( P R O C .  P H Y S .  S O C . ) ,  1968 ,  SER.  2 ,  V O L .  1.  P R I N T E D  I N  G R E A T  B R I T A I N  

Some consequences of the Gel’fand-Levitan equations 

M. I. SOBELT 
Theoretical Physics Division, Atomic Energy Research Establishment, Harwell, 
Didcot, Berks. 
MS. received 6th June 1968 

Abstract. The Gel’fand-Levitan equations for the solution of the inverse scattering 
problem are written in terms of the half-off-energy-shell matrix element, This 
element is given in terms of the phase shifts, by a double integral equation in which 
the kernel has simple poles. We also find an integral equation for the wave function. 
We include the effects of bound states, and find a relation between the large and small 
Y behaviour of the bound-state wave function. 

1. Introduction 
It has been known for some time that, in the realm of potential theory, a knowledge of 

the phase shift for one angular-momentum state and all energies will determine the potential 
uniquely. Here we assume there are no bound states, and we return to the bound-state 
problem in § 4. ,4 non-local potential can in general be written as V = V ( y 2 ,  p 2 ,  L2) ,  but 
if one assumes the form 

then a knowledge of the complete S matrix, phase shifts 6 , ( k )  for all I and for 0 < k < m 
determines V,  by means of the equations of Gel’fand and Levitan (Xewton 1960). 

This theory is particularly interesting from the point of view of the two-nucleon 
interaction, where there is a considerable body of experimental and phenomenological data 
on the 5’ matrix, and at the same time no simple and generally accepted theory of the 
interaction. However, there has been in recent years a change in emphasis in uses of the 
two-nucleon interaction. In  dealing with inelastic problems such as three-body reactions 
(Aaron et al. 1964) and photon emission in two-body reactions (Cromer and Sobel 1966) 
the quantities actually required are the off-energy-shell elements of the two-body scattering 
matrix. A phenomenological potential is, of course, required to calculate these elements, 
but the potential itself is not directly required in calculating the reaction amplitudes. We 
propose, then, to express the Gel’fand-Levitan equations in a form which gives the half-off- 
shell matrix element in terms of the phase shift. This is an integral equation, which is 
found in 4 3. In  4 2 we find an integral equation for the wave function, which in turn leads 
to the result for the matrix element. The  effects of bound states are considered in $4 
and we find an interesting condition on the bound-state wave function. In  the appendix 
we summarize the basic equations for the inverse scattering problem and define our notation. 

It should be noted that the actual two-nucleon interaction does not necessarily take 
the form of equation (1). Experiment does not, at this time, provide enough information 
to determine the nature of a general non-local potential, and there are several different 
models which are in adequate agreement with experiment. However, the models (Hamada 
and Johnston 1962, Lassila et al. 1962) which are generally considered most ‘realistic’ (in 
the sense of agreement with experiment) do take the form of (1). 

V = V(Y2, L2) (1) 

2. Wave functions 
I n  the Gel’fand-Levitan equation (A6), let us take V I )  = 0. Thus we have 

q$(I)(k, Y) = Y k - ’ j , ( k ,  Y) (2) 
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and l ,fl(l)(k)l = 1. Taking the Fourier transform? of (A9) we find 

and the important point is that 4 is determined by the phase shift. If we use equation (AS) 
and write Kl(r, Y‘) in terms of K,(r, A’), we find the equation for $1:  

+ l ( k ,  Y) = r k - , j l ( k ,  Y) + k - l - l  1: dk’ & ( k ’ ) k ’ z + l g t ( k ,  k’; ~ ) $ ~ ( k ’ ,  r )  ( 5 )  

where 

Equation ( 5 )  is a single integral equation for the wave function, and the kernel 2Fl is 
non-singular. An important characteristic of equation ( 5 )  is that the kernel is essentially 
an analytic function, which increases the practicality of a solution by numerical means. 
This is in contrast to (A6) where the kernel g(r”, r‘)  must be evaluated as an integral for 
each r” and r ’ .  

If equation ( 5 )  is written for large Y, we obtain two conditions on the phase shifts. 
Using the asymptotic forms for $bl (equation (A2)) and j l ,  we may equate coefficients of 
cos kr and sin kr, to find 

(7)  

These are, of course, highly non-linear, and not of much practical value. 

3. Off-energy-shell matrix elements 
The half-off-shell matrix element is proportional to the momentum-space wave function. 

Hence we will want the Fourier transform of ( 5 ) ,  or the double transform of (A6). It has 
been shown (Noyes 1965) that the full off-shell element is given by an integral over a 
product of half off-shell elements, so that K,(k, k’) may be regarded as the fundamental 
quantity in describing scattering. From ( 5 )  it is easy to deduce 

where 

1- Our notation isf(k) = dy(ky)j@v)f(r). To avoid an excess of symbols we denote a function 
and its Fourier transform by the same letter. The meaning will be indicated by the argument, 
k’s  and P’s for momenta and r’s for positions. 
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For 1 = 0 the kernel F is 
1 

- 
1 1 

F,(k,  k ’ ; P , P ’ )  = - --[ 
7r2 (P’ - k’)2 - (p  - k)2 (P’ - k’)2 - (p  + k)2 

1 1 + - 
(P’ + k’)Z - ( p  - k)2  ( p  ’ + k ’) - ( p  +h)”) 

32 pa’kk’(k2-kk12+PZ-P’2)  

7r2 { P ’ Z -  (k’ + k + P ) Z } { P ‘ 2 -  (k’ + k  --/3)2) 

X ( P ’ Z -  (k’ - k + /3 )2 } {P ’2 -  (k’ - k - P)”-’ * 

= -  (9) 

The second form is written to show that there should be no difficulty about convergence 
of the integral equation (8) at p, P’ -+ CO. For I > 0 we have not found a simple general 
form for the function F ,  but for any particular low I value one can always find a straight- 
forward analytic expression, and it will have properties similar to F,. In  any case, in a 
practical solution of (8)) one will certainly first deal with S waves, which are best known 
and most important. 

Equation (8) has both a &function singularity and a simple pole at k = k’. These 
singularities are actually present in K ,  because K,(Y, k’) does not go to zero at Y --f CO. 
However, we may subtract from K,(Y, k’) its asymptotic form, as given by (3) and (A2), and 
define 

U,(Y, k) Kl(y, k) -&dw{c,(k) j l (kY) - s,(k)n,(h)) (10) 
where 

Then U,(Y, k) + 0 as Y + CO and U,(k, k’) is finite at k = k’. It obeys the integral 
eauation 

Here P denotes the principal values, and, since U ,  is real, one may take the principal value 
for the poles in F ,  as well. One could multiply the equation by k’ - k and write an equiva- 
lent equation for o ( k ,  k’) = ( k ’ - K )  x U(k, A’), thereby eliminating the singularity at 
K = k’. This equation would have the undesirable features of requiring the ad hoc boundary 
condition o(k, k) = 0, and of having an inhomogeneous term which does not obey the 
boundary condition. Preferably one can subtract from both sides the quantity (k’ - k)-’R 
where R is the residue at k’ = k. This eliminates the pole but leaves the S-function. In  
fact there are also terms in S(k -k’) appearing in the inhomogeneous terms on the right-hand 
side of (12). These appear when the singularities (in F ,  and the factor (p ’2  - ,B2) -I) coincide,? 
and we may isolate all these singular terms. Then they may simply be dropped, as will be 
apparent shortly. 

T o  find the relation between U,(k,  k’) and the half-off-shell matrix element we first 
define the latter as t , (k )q(k ,  k’), Here t , ( k )  = k-’ sin 6 , ( k )  exp{i6,(k)) is the on-shell 
element, and q(k, k) = 1. Then it is well known (Noyes 1965) that 

dr ky2j,(k‘r){n,(kr) -cot S,(k)  j , ( k r )  -u , (k ,  Y)) 

$We use the relation S E m  d t { ( t - s ) ( t - - s ’ ) } - l  = 2.rrz6(s-s’). 
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where U, is the radial wave function that goes asymptotically as n,(kr)- cot S,(k)  j,(kr), 
By comparing the normalization of U ,  with that of $1 and using (3), we find 

Thus U,(k,  k’) is directly related to the half-off-shell element. Furthermore, we note 
from (14) that U 1  is undefined at k = k’ to the extent of a term in S(k-A’) .  So, if we want 
to make the obvious choice 

U,(k,  k) = lim U,(k,  k’) 

it is correct to drop all &functions which appear in (12). We write the result for I = 0. If 
k’+k 

and 

then 

where 

and we use the notation, for any function x(x, y) 
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Thus we have a double integral equation in which the kernel has simple poles; the 
kernel is a simple algebraic expression. What is the possibility of a practical solution, by 
numerical means, of (15)? It is hard to say, but this type of equation is perhaps about at 
the limit of present computers’ capabilities. I n  any case, the point would not be to calculate 
off-shell matrix elements by this method as they are needed in a calculation of some other 
process. Rather, off-shell elements could be computed once and for all (to be revised, of 
course, as phase-shift analyses are improved) and once found possibly fitted by a simple 
analytic formula. This would constitute a parameterization of the two-body interaction 
to replace the customary parameterization by means of a potential model. It would have 
the advantage of being more closely related to the uses to which it would be put. Moreover, 
the possibility of using experimental data on nucleon-nucleon bremsstrahlung to determine 
half-off-shell elements has recently been investigated (Cromer and Sobel, to be published) 
and this further argues for the new parameterization. 

4. Bound states 
In  the case of n,  bound states of angular momentum I we expect to find an equation 

for the off-shell elements which has n, free parameters, and involves the binding energies 
- K , ~ ,  and the phase shifts. In  what follows we take for simplicity n, = 1 ; if there are 
several bound states only minor algebraic modifications occur. 

Using the quantity p ,  from (AlO), let us define j l ( r ,  Y’) and I?,(Y, Y’) by (AS) and (A9) 
respectively, with p, replaced by p,. Then K ,  is related to the wave function (as in (3)), 
and to the half-off-shell matrix element. Instead of (14) we have 

and (A6) can be written in the form 

1 - 7  

Here +(Y) is the bound-state wave function, normalized as in (Al). I t  should be noted 
that, although N is independent of K, any information about the bound-state wave function 
will determine N. For example, one might use the photodisintegration of the deuteron, 
in principle, to determine the constant N for nucleons. 

T o  solve for the off-shell elements we must eliminate #(Y), for which purpose we write 
(A8) at k = -iK: 

+(Y)D(Y) = +(l)( - iK, Y) + dr’ E(Y, r’)+(I)( i, 
where 

D(Y)  = 1+- dy’(+(l)( - iK, Y ’ ) } ~ .  
N 2  ? 0 

After some algebra we find from (19) and (20) 

1 
N 

K , ( k ,  k’) = ( & ~ ) ~ f 1 ( k ) 8 ( k  -k’) ++nf , (k’ )  7 h ( k ,  A’) 
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where 

h(k, k’) = dy(ky) jl(kY)#l)( - iK, y ) R ( k ’ ,  Y )  !a 
m 

~ ( k ,  A’; P ,  P ’ )  = \ dy(ky)  j,(ky>(py>j,(py>o(i.>R(K’, I ~ M P ’ ,  1,) 
y o  

with 

R(q, I < )  = D ( Y ) - ~  dy’(qy’) jl(qY’)#l)( - iK, Y’). ib 
Thus (21) replaces (8) as a double integral equation for the half-off-shell matrix element. 
The  singularities at k = k’ can be removed in a similar, but much more tedious way. Here 
the kernel unfortunately is not given analytically. The  function @ involves integrals which, 
although they involve elementary functions, cannot be done analytically (primarily because 
of the function D ( Y ) - ~ ) .  

An interesting condition on the bound-state wave function is found by evaluating (19) 
for large Y. The leading terms go as exp(Kcr). Taking &Y)  -+ a, e-lcr and equating 
coefficients, we find that a6/N2 equals a quantity involving the phase shifts alone, Put in 
terms of the ordinary wave function #, normalized by 

r+m 

dr #“Y) = 1, we find 

1 dkcl(k)(~’+k2)-l{K--k tanS,(k)) 
(2Z+ l)!! 
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Appendix 
Here we present the Gel’fand-Levitan equation for solving the inverse scattering prob- 

lem, following the treatment and notation of Newton (1960), and at first neglecting bound 
states. Define q5E(k, Y) for momentum k = z / E t  and angular momentum I, as the solution 
of the radial Schrodinger equation which goes as 

+ l ( k ,  Y) + {(21+ l)!!}-I++l as Y + O .  (AI) 

q$(k, I + )  -+ \ f l ( k ) 1 k - l - l  sin{k~-$nZ+Sl(k)} (A21 

For large Y clearly $ l  goes as 

where 6 , ( k )  is the phase shift. Provided the first and second moments of V(?, 1(Z+ 1)) 
are finite, one can show that 

Furthermore we define the spectral function 

-- - dPl(E) 
dE  

1 k2’ t l  

f,o(Z‘ 
f We use units in which fi = 2m = 1. 
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Now to solve the problem one must use a potential YC1) whose phase shifts are known. 
A kernel function 

gdy, Y’) = 1 d(p,’l’(E) - P , ( q # , ’ l ) ( k  M o ) ( k ,  y ’ )  (A5) 

is constructed, using the spectral function p , ( I )  and wave function 
P I ) .  Then one must solve the integral equation 

corresponding to 

& ( Y ,  Y ’ )  = g l ( Y ,  Y ’ )  + dr“ K,(Y, Y ” ) g l ( Y ” ,  Y’) (A61 1: 
for K,. The potential may be constructed from K ,  by 

d 
dr 

V ( Y 2 ,  Z(Z+ 1)) = Y y Y 2 ,  Z(Z+ 1))+2--K,(?r, Y). (A7) 

The  wave function is related to K,  by 

which is essentially the Fourier transform of (A6), and 

If there are bound states at energies E, = - K,’ (a  = 1, ..., a,) one does not find a 
unique potential. There is rather an qparameter  set of potentials. Equations (A5)-(A9) 
remain valid, but the spectral function is changed to 

and (A3) becomes 

The  N, are free parameters. 
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